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Abstract-The high-order theory of multilayer plates is presented in this paper. The model is based
on the hypothesis of the nonlinear dependence of displacements on the transverse coordinate in
each layer. The strains in each layer are taken into account.

The feasibility of the theory is shown by example of the problem ofa ball impacting a multilayer
plate. The numerical results are compared with experimental data.

The suggested theory is also compared with the Timoshenko type theory. The advantage of the
suggested model is demonstrated for the case of localized loads action. © 1998 Elsevier Science
Ltd. All rights reserved.

L INTRODUCTION

Multilayer plates are widely used in modern machine-building. This requires further refining
of mathematical models describing their behavior. The selection of a model adequately
describing the response of a structure is made on the basis of several criteria depending on
the concrete problem. As a rule, the following criteria are used: relative plate thickness h/L
(h is the plate thickness, L is the characteristic problem dimension), relationship of the
layers elastic properties, type ofloading (localization in space and time).

In the case of small relative thicknesses and distributed loads smoothly changing in
time, a valid result may be obtained on the basis of the first-order theory (see, for example,
Reissner, 1944; Reddy, 1989; Smetankina et al., 1995). When calculating structures with a
big relative thickness and heterogeneous layers affected by localized loads, high-order
refined theories are used (e.g. Nelson and Lorch, 1974; Lo et al., 1977b; Thangjitham et
al., 1987; Reddy, 1990; Nosier et al., 1994). These theories are based on the hypotheses of
the nonlinear dependence of displacements on the transverse coordinate, and they take into
account transverse strains. As a rule, these models are used for calculating structures under
static loading (Lo et al., I 977b).

In this paper, the model of a multilayer plate~HORT (High Order Refined Theory)~

based on hypotheses for each layer has been suggested. The hypotheses for tangential
displacements are presented by cubic dependencies on the transverse coordinate, and for
normal displacements~a quadratic dependence. The suggested model is a generalization
of the approach described by Lo et al. (1977a).

The feasibility of this theory is demonstrated by example of the problem of transient
vibrations of a plate under the influence of a low-velocity impact. The contact between the
indenter and the plate is described on the basis of Hertz's law. The possibility of using
Hertz's law has been discussed in the fundamental works of Dinnik (1952), Timoshenko
(1959), Goldsmith (1960), Kilchevsky (1976), Panovco (1977), Johnson (1987), Nosier et
al. (1994). The analysis conducted by these authors convinces us that the use of Hertz's law
is justified at elastic low-velocity impact.

The problem solution is presented in the form of trigonometric series. The numerical
results are compared with experimental data. The experiment was carried out by using
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dynamic wide-range strain measurement technique (see Vorobiev et al., 1989). The tech­
nique ensures detection of the current time-dependent strain values and measurements of
time intervals.

For the case of impulse loading, the suggested theory is compared with the first-order
refined theory (FORT) proposed by Smetankina et al. (1995).

2. MULTILAYER PLATE

A multilayer plate consists of uniform isotropic constant thickness layers. The contact
between the layers excludes their delamination and mutual slipping. The plate is considered
in the Cartesian system of coordinates xyz connected with the external surface of the first
layer (Fig. 1).

The theory describing the behavior of a plate under transient loading is based on the
high-order accuracy hypotheses (Lo et al., 1977a) for each of the layers.

To describe the displacement of a point in the i-th layer in the direction of the
coordinate axes, the following kinematic relationships are used

(1)

where

i

h7=(hY, b;= 'ihj; J;_I :::;z:::;J;; i=W.
j~1

Here t is time; h; is the thickness of the i-th layer; I is the number of layers in a pack; uo,
Vo, Wo, Ujb Vjb Wjl are the sought for functions depending on x, y, t.

The strains in the i-th layer are defined by Cauchy's law
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Fig. 1. Multilayer plate.
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(2)

Based on Hooke's law, the relationship between the stresses and the strains in the i-th
layer is established

. E, (. Vi )
(T~=-1- e~+-12 8i ;+vi - Vi

. E, (. Vi )
(T~=-l- e~+-l2 8i ;+vi - Vi

. E, (. Vi )
(T~ = -1- e~ + -12 8i ;+v, - Vi

. Ei ·

L~y = 2(1 +v,) }'~y ;

. Ei ·

L~Z = 2(1 +v,) }'~z ; (3)

where 8i = e~ + e~ + e; is the relative volume change.
The equations of motion of a multilayer plate and the natural boundary conditions

are obtained for Hamilton's variation principle

I
II

(JK-MI+J'F)dt = O.
to

(4)

Here 15K, JIT are the variations of kinetic and potential energy, 15'F is the elementary work
of external forces.

We consider a rectangular plate limited by the coordinate lines x ~ 0, x = A, Y = 0,
Y = B. In this case the kinetic energy may be presented in the form

1 [ iAiB
fbiK= 2L P, (ul+vl+wl)dxdydz.

1= I 0 0 15/_ 1

Here Pi is the density of the i-th layer, symbol (.) designates the derivative a/at.
The potential energy of the plate is defined as follows:

In the case when the external load is applied to the external surface of the first layer
(z = 0) the elementary work of the external forces may be presented as :
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where qx' qy, qz are the coordinate axes projections of external force applied to the external
surface of the first layer.

In the matrix form the equation obtained have the following form:

nU-AU=Q.

Here U is a vector whose components are the sought for functions

(5)

A, n are symmetric matrices with the dimensions (81+3) x (81 + 3). Therefore, in Appendix
I their elements are given only for the lower triangle.

Vector Q is of the dimension (81+3) and its elements have the following form

The boundary conditions for the case of simply supported rectangular plate A x Bare
given in Appendix 2.

3. METHOD OF SOLVING THE SYSTEM OF EQUATIONS

The sought for functions uo, vo, WO, U'b Vik. Wi! (i = 1, I, k = 1,2,3,1 = 1,2) and the
external load qx, qy, qz are expanded into trigonometric series by functions satisfying the
boundary conditions

C/O 00

[uo (x, y, t), Uik(X, y, t), qx(X, y, t)] = L L [«1>~mn(t), «1>!krnn(t), qxmn(t)]B1rnn(x, y);
m=l n=]

Xl 00

[vo (x, y, t), V'k(X, y, t), qy(X, y, t)] = L L [<1l{;mn(t), <l>-fkmn(t), qymn (t)]B2mn (X, y) ;
m=l n= l

00 Xl

[Wo(X, y, t), waCx, y, t), qz(X, y, t)] = L L [«1>~rnn(t), «1>flmn(t) , qzmn(t)]B3mn (x, y),
m=t n=1

i= 1,7, k= 1,2,3, 1= 1,2. (6)

Functions Bkmn(x, y), k = 1,2,3 in the case of simple supported plate take the form

As a result, the problem of transient vibrations of a multilayer plate for each pair of
values m and n is reduced to integration of a system of ordinary differential equations with
constant coefficients

(7)

where <lJmn and qmn are vectors with the following components
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Matrix I\.mn is obtained from I\. by substituting the partial derivatives in the expressions
for the matrix elements with coefficients yielded during differentiation of coordinate func­
tions. Equations (7) are integrated by the modified method of expanding the solution into
Taylor's series. The displacements are defined according to formulas (1), (6), and the
stresses are defined by (2), (3).

4. IMPACT

The plate being investigated is located horizontally. The indenter (a cylinder with a
hemispheric butt end of radius .lQi§ dropped from the height h and at the moment of
impact it has the velocity Vo = .j2gh, where g is the gravitational acceleration.

When solving the impact problem, the system of eqns (5) is to be complemented with
the ball motion equation and the condition of motion consistency of the indenter and the
plate.

The indenter equation of motion and the initial conditions have the form :

Mt = Mg-P, z(O) = 0, teO) = Vo.

Here M is the ball mass; z = z(t) and P is the contact force.
The consistency condition is based on the hypothesis that full displacement of the

indenter in the process of impact consists of the plate dynamic deflection and indentation
in the contact point:

z-wo -a = 0,

where a is the indentation.
The indentation a is accounted for by solving Hertz's problem on the indentation of a

ball into an elastic semispace (see Dinnik, 1952) :

a = kp 2
/
3

;

= [~ (e l +e)Jl!3 .
k 256 R '

4(I- Vl) e= 4(l-v)
e1 = E

1
' E'

Here E, v are Young's indenter material; E b VI are similar characteristics for the plate first
layer.

It is assumed that the contact pressure is distributed over a circular area with the radius
aCt) according to the law

[
(X-xo)2 + (y- YO)2JI!2

q(x,y,t) = poet) 1- a(t) ,

where Xo, Yo are the coordinates of the contact point. Function q(x,y, t) shall satisfy the
condition:
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The value aCt) is computed from the fonnula

The Fourier series expansion coefficients q(x,Y, t) have the fonn

12P [sin Pmn ] . mnxo . nnyo
qmn = --,- ~-- -COSPmn sm~smB' wherepmn = na

A BP;;'n Pmn

5. EXPERIMENTAL TECHNIQUE

To measure the plate strain under an impact action, the method of dynamic wide­
range strain measurement was used. The plate fastening over its periphery simulates the
condition of simple supporting. Loading is effected by dropping an indenter onto the plate
from a specified height.

A three-component rosette of strain gauges was bonded onto the middle of the plate
on the external surface of the last layer. In this work we used small-base (measurement
base-l mm) foil piezoresistors. A piezoceramic accelerometer located on the external
surface of the first layer at a distance of 3 em from the impact point was used as a triggering
transmitter .

A bridge circuit is used for measuring the strain. Prior to the experiment, balancing
and calibration of the measurement channels was performed.

The signals from the strain gauge rosette were input to the piezoamplifier, and then to
the computerized measuring-and-computing system which recorded and processed the data
obtained.

The more detail description of experimental method have been presented in the work
by Smetankina et al. (1995).

6. RESULT

Investigated were simple supported plates. The values of the mechanical parameters
of the materials being used are given in Table 1.

A single-layer plate has the following geometric parameters: A = 0.47 m; B = 0.42
m; h = 26 mm. The plate was made of silica glass.

The three-layer plate has the following geometric parameters: A = 0.47 m; B = 0.42
m; h] = h3 = 12 mm; h2 = 2 mm. The carrier layers (i = 1, 3) are made of silica glass and
the adhesive layer (i = 2) is made of a polymer.

Table I. Characteristics of the layer materials

Material

Silica glass
Organic glass
Polymer

E[MPa]

6.67 X 10'
5.59 X IOJ

2.74xlO'

0.22
0.38
0.38

2.5 X 10J
1.2 X 103

1.2 X 103



High-order theory of multilayer plates 3397

HORT
experiment
l1t = 20 J.LS

5

·5

10

5Ox.MPar----------------------,

Fig. 2. Stresses in a five-layer plate at an impact. Indenter no. I, h = I m.

Similar characteristics for a five-layer plate have the following values: A = 0.6 m;
B = 0.28 m; h] = 5 mm; h2 = 3 mm; h3 = 15 mm; h4 = 2 mm; hs = 20 mm. The carrier
layers (i = 1,3,5) are made of silica glass and the adhesive ones (i = 2,4) are made of
polymer.

The plate response to impulse and impact loading has been investigated.
Impact loading was effected by two indenters: no. 1 and no. 2 (R] = R 2 = 30 mm).

The indenters were made of organic glass, and their masses were M] = 0.215 kg and
M 2 = 0.120 kg, respectively. The mechanical characteristics of organic glass are presented
in Table 1.

In all the investigated cases the impact was made on the external surface of the first
layer in the middle of the plate. The stresses are calculated for the external surface of the
last layer in the impact point.

Figure 2 shows the dynamic response of a five-layer plate to the action of indenter no.
1 dropped from the height h = 1 m (solid line). In the same figure, similar results obtained
experimentally (dashed line) are shown.

Figure 3 shows the numerical values of flexures of the external surfaces of the first
(solid line) and last (dashed line) layers in the impact point.

Similar results for a three-layer plate and indenter no. 2 are shown in Figs 4 and 5.
Figure 6 shows the dependence of the maximal values of normal stresses in a three­

layer plate on the height of dropping of indenter no. 2. The solid line designates the
numerical result and the dashed line shows the experimental one.

The response of a multilayer plate to impulse load action has also been investigated.
The impulse load is applied to a rectangular area x] ,,; x ,,; x 2, YI ,,; Y ,,; Y2 according

to the law

where Po is the load intensity and H(t) is Heaviside's function.
In this case, the total force applied to the plate is expressed by

The value Po is selected so that the total force value be equal P = 2 kN in all the cases being
investigated.



3398 A. N. Shupikov et al.
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Fig. 3. Deflections of external surfaces of a 5-layer plate. Indenter no. I, h = I m.
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Fig. 4. Stresses in a three-layer plate at an impact. Indenter no. 2, h = I m.

Figure 7 shows the distribution of the normal stresses over the thickness in the center
of a single-layer plate at the moment of time when they reach their maximum values. The
impulse load is evenly distributed over the external surface of the first layer. The load
intensity Po = 10.13 kPa.

Figure 8 shows similar results for the case when the impulse load is evenly distributed
over a square with the side 5 mm in the middle of the plate. The load intensity Po = 80
MPa.

Figures 9 and 10 show similar results for a three-layer plate. In this case the stresses in
the carrier layers (i = 1,3) significantly exceed the stresses in the adhesive layer (i = 2).
Therefore their pictorial presentation in the accepted scale is difficult.
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Fig. 5. Deflections of external surfaces of a three-layer plate. Indenter no. 2, h = I m.
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Fig. 6. Maximal stresses vs dropping height. Three-layer plate, indenter no. 2.

7. DISCUSSION

The theory of the multilayer plates proposed (HaRT) is based on the kinetic hypothesis
(1), which allows to take account of the effect of all the components of the stress tensor (3)
and as a consequence, the effects of normal flexure and its strain in the transverse direction
in each of its layers.

Comparison of theoretical and experimental data given in Figs 2, 4 and 6 indicates
that the suggested theory consistently describes the process of transient strain of multilayer
plates under impact loading.

In some cases (Fig. 3) of essential account is the normal strain in the transverse
direction.

A good match of results obtained on the basis of theory FORT and the suggested
theory HaRT in the case of distributed loads (Figs 7 and 9).
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Fig. 7. Distribution of normal stresses over the thickness during deflection of a one-layer plate.
Evenly distributed load.
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Fig. 8. Distribution of normal stresses over the thickness during deflection of a one-layer plate.

Locally distributed load.

When localized loads act upon the plate the results differ drastically (Figs 8 and 10).
This is due to the fact that the deformed state of a plate in the load zone is of an essentially
3-D character. In this case the stress distribution over the plate thickness is a nonlinear
one.

The results presented demonstrate the advantage of this theory HORT when invest­
igating the response of a structure under local actions, especially during impacts.
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Fig. 9. Distribution of normal stresses over the thickness during deflection of a three-layer plate.

Evenly distributed load.
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Fig. 10. Distribution of normal stresses over the thickness during deflection of a three-layer plate.

Locally distributed load.

The suggested theory has a high-order approximation and its numerical implemen­
tation is associated with significant difficulties. Therefore, the researcher has to define cases
where this application is justified. A detailed discussion of these issues is given in Lo et al.
(1977a, b).
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APPENDIX I: ELEMENTS OF MATRICES A, n
Matrix A:

a' a'
A'l =C1,-+C21 -;. ax' ay'

a' a'
A,,=C'I-+CIl -;. ax' ay'

(
iP a' )An = -C21 - + - ;
ax' ay' (

a' 0' )
A)+i+(k-I)I,1 = h~ D lik - +D2i,,- ;

ax' ay'

a' a'
!\.3+i+(k- 1)1,3+i+(r-I)/ = ~Iikir- +'12ikjr- +X2ikjr;

ox' oy'

a'
A 3+ 3J+ i+(k-l)I,3+i+(r-I)1 = 113ikjr OXGY;

Here

a' a'
A 3 + 31+ i +(k-I)/,3+31+.J+(r-l)1 = 172ikjr- +11likj'-2 +X2ikjr;

ax' ay

a (a' a' )A 3 +. 6/+ i+.(p-I)1,2 = hff34i-;-; A3 + 6f+ i +.(p-l)l,3 = -It!D2ip ::-; + ------;- ;
~ = ~

o a
A 3 + 61+ i+(p-l)I,3+J+(r-1)1 = ';kjfax; A 3 + 6I+ i+(p-I)I.3+31+.J+(r-l)[ = Ckjr oy;

(
a' a' )

A3 + 6J +. i+(p-l)f,3+6J+.J+.(I-I)[ = -1'/2ipjl -, + -2 +XliPjl'ox ay

/

Co, = L hi]"};
)=1

h,/3",
D etis = Crx.i+.1 +~;

E,(1- Vi) E E, E,v,
/3'i = (1 +vJ(1-2vi); /32' = 2(1 ~v,); /33i = 2(1 +v,)(1-2vi); /34' = (1 +v,)(1-2v,);
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{

a,
k+r- I kr{Jaj

X"'j, = -h, k+r-I'

0,

j < i} {!J4"
.=' . (. = If!h~ !J4P- !J2,r

J 1 , Ik;T I j r+p ,

j < i -!J2j,

~< I}
J= I ,

j>i

where i,j = 1,I,k,r= 1,2,3,l,p= 1,2.
Matrix 0:

01.1 = 02.2 = -0).3 = ~I; 0 3 +,+(.-1)/.1 = 0 3+31+'+('-1)/.2 = h7S,.; 03+6/+,+(p_I)/.3 = -h'(S,p;

j
S'"

n3+i+(k~ 1)/.3+i+(r-1)/ = Q3+31+i+(k-I)/,3+ 3/+)+(r-I)1 = h}hj Sik+n

Sjn

~ < ~lJ = I;

j>i

where

j
S,p,

0:3+6I+i+(P-l)I,3+6I+J+(I-lll = -Jt:h~ Sip+"

Sjp,

~ < ~lJ = 1,

j>i

1

~n = L h,p,;
;=11

hp
S,. = ~'+l + k~'I' i,j=D, k,r = 1,2,3, l,p = 1,2.

The remaining matrix elements are equal to zero.

APPENDIX 2: BOUNDARY CONDITIONS

The boundary conditions on the boundaries x = °and x = A may be written in the following form :

[BZ;lU=o, i,j=I,8/+3.

The corresponding conditions for the boundaries y = 0, y = B are of the form :

Here

a
B'I.1 =C llax ;

a
B' 2 = C4 '-a ;. y

a
BX h'D'1,]+3/+)+(r-I)1 = j 4jr ay'

B~,3+6/+.i+(l-1)1= hjf34j; B"2,2 = B-~.] = B·3+ 3/+i+(k-I)I,3+3J+i+(k-l)! = B>3+61+i+(P-I)I,3+61+i+(P-l)! = 1;

x • a. x • a.
B3+'+('-I)/,1 =h,D Ji• ax ' B 3+,+(._I)I.2 =h,D4"ay'

a
B:3+ i +(k-l)I,3+i+(r-l)[ = tTlikjr ax;

a
B3+ i+(k-I)J,3+3/+J+(r-l)I = Y14ikjr oy;

f
o'

x _ I l
B 3+,+(.-1)1.3+6/+i+(i-I)1 - h7hj!J4j k+l'

I,

B{,I = Bj,3 = B)+i+(k-I)I,3+i+(k-I)! = B>J+61+i+(p-I)/,3+61+i+(p-I)! = 1 ;

a
B~2 = C11 -a ;. y

y _ I • y _' . .i.. y. _' . .i..
B 2,3+61+1+(I-I)/- hj P4j, B 3 + 31+ i+(k-I)/.1 - hiD41kax' B 3 + 31+.+(k-I)/,2 - hiDllkay'

a
B)+3/+i+(k-l)l,3+j+(r-I)1 = 1J4jkjr ax;

a
B~+31+i+(k-I)/.3+31+j+(r-I)1 = '1likjr oy;

~<i}
J = I ,

j>i

i,j= I,/,k,r= 1,2,3,l,p= 1,2,
The remaining elements of matrices II' and BY are equal to zero.


